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Abstract. It is shown that any chiral superfield has an anomalons dimension equal to zero 
when all the couplings of the theory in which it is contained are at a renormalization group 
fixed point. It is argued that super-am only has such a fixed point at zero coupling, and 
thence that the theory is trivial. 

1. Introduction 

Despite the important implications of the behaviour of the p functions in a quantum 
theory, very little is known for sure id  most field theories away from the origin of 
coupling constant space. One reason for this is that the zeros at the p function often 
lie outside the range of normal perturbation theory. Such  is^ the case for the Landau- 
Ginsburg p'theory associated with the three-dimensional Ising model, where one must 
use techniques such as the Wilson-Fisher &-expansion to locate the fixed point. 

An exception to this rather disappointing situation is the four-dimensional Wess- 
Zumino model. It was shown early on in the development of supersymmetry [l] that 
this theory could only have a zero of the p function at the origin. The argument these 
authors used was ai follows: At a fixed point the theory should exhibit conformal 
invariance and hence as it is a supersymmetric theory, superconformal invariance. This 
implies certain superconformal Ward identities for the known conformal three point 
functions in component field space. After implementing these Ward identities on the 
form of the three point function in x-space, the authors show that the dimensions of 
the. fields are canonical. Using a previously known theorem they then conclude that 
the theory must be free at a fixed point. 

The purpose of this paper is to extend the above result to other supersymmetric 
theories. We will begin by giving a simplified version of the FIZ argument for the 
Wess-Zumino model. This is achieved in two ways, we put their original argument in 
superspace form, and we also show that the result follows as a simple consequence 
of the existence of chial  superfields which carry a representation of the superconformal 
group at the fixed point. 

~.'coustructiOn of conformal superspace 

We begin by giving an argument relating the chiral and dilatation weights of a field, 
which supplements that given in [Z]. 
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The N = 1 superconformal algebra in four dimensions is generated by the set 

IP,, MSv, 0, K,, 4 QA, Q A ,  SA, SA} ( 1 )  

where P, generates translations, M,. Lorentz rotations, D dilatations, A chiral transfor- 
mations, and ( QA/ Qa) and (SA/Sa) are Majorana spinors generating super-transla- 
tions and special super-translations respectively. These generators satisfy the following 
Lie brackets which consitute the conformal algebra: 

M p a I = q ” p M , a - q , p M ~ + q ~ ~ v p - q ~ , p  

[MMV, PPI = qvpP, - ?),pPy 

[M,., Kpl = vVpK, - qpPKv 

[p,, &I = 2(7$ - M,,J 

[P,, Dl = P, 

[K,, D l = - K ,  
and also the following super-Lie brackets: 

(2) 

Note our conventions here are identical with those in reference [3]. 
In order to realize manifestly superconformal invariance in our field theories, it 

will prove convenient to construct them in superspace [4], which we define here as 
the coset supermanifold 

(5) 
N = 1 superconformal group 

(Mpv,  Q K,, 4 SA, SA) 
’ 

This is an eight-dimensional space, globally parametrized by co-ordinates 
(x,, BA, e’A), the point with co-ordinates (x”, BA, gA) being canonically associated with 
the coset representative 

ez-K-=exp(x’P,+ o ~ Q ~ +  CA&). (6) 
We may now lind a representation of the superconformal algebra terms of the 

Killing vectors which act on fields defined on this space, i.e. for each generator T we 
seek an operator 8, such that 
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The action of a.superconformal transformation on a superfield p(x,, SA,  CA) may be 
computed as follows: If T is any generator of,the superconfonnal algebra then 

~ p ( x ,  0, J)~= ez.K(e-i.KT ei..K)p(0) ( 8 )  
(since e’.Kp(o)=p(x, 0, J)). 

This may now be evaluated using the Baker-Campbell-Hausdorff formula: 

“ 1  
n=o n !  e-’.KTe‘.K= C -[[...[ T,z.K],z .K] ,..., z.K](nbrackets). (9) 

Since no confusion will arise, we may henceforth denote both the abstract generator 

Thus, we find the generators are realized as differential operators on superspace 
T and its associated Killing field ST simply by T. 

as follows: (N.B. a,=a/ax,; aA=a/aeA;&=a/afA) 

P, =a, 
D = -x*a, -$AaA-ie a*+ h 

M,,=x.a,-x,a,+ie V,”A as+zpv 
~ = 3 o A a , - 3 e ’ ” ; ~ + ’ d  

S, = ( i e 2 u ~ i J A - e A ~ ~ + ~ , u ~ ~ B ) a p - 2 ~ 2 a A + ( i x ~ u , A B  -2oAJB)2B 

S ~ = ( i o  -z uAA * . eA - &Ax* - x p z P ) a ,  - P a * +  (ix*cdE -2J,eB)aB 

~ , = 2 ~ , ~ ’ a , - x ~ a , - e  2 e -2 a , + ( ~ , e ~ - x ~ u , ~ ~ ~ e ~ - i e ~ ~ , ~ ~ C ~ ) a ~  

QA=aA+iuLO -A a, , &=iA+iu&eAa, 

1 -A- 

1 A Ba -1-A-  E-’ 

+0Eu%Z,v+20AAiOAdi .YA (10) 

- $ * e z Z P v + 2 ~ ~ A - ~ ~ d + g ~  

+ (X, ,CA+X~~, .~~~JB -iC2uPEAeB)ZA+ 8 A c p ~ C s E , . v A p ~ p A  

+iOAu,ABg~ +i&AcdB.YE +iOAufiA,&’d -2x-A -2x’Z,, + K, 

where the operators {A, i,,, A, .YA, g ~ ,  K,} form a representation of the isotropygroup . .  , 

{D, M,”, A, SA, SA, K,} at the point (x, 0, J) = (O,O, 0), i.e. 

- .  

DdO) = A d o )  sApo(0) =yAp(o) 

M-,,lP(O) =z.,,m ~ SA48 = 9 A d O )  (11) 
A d o )  =-@‘do) K,’P(O)= K@P(o): 

A is known as the dilatation weight and d the chiral weight of the field being acted 
upon. In an irreducible representation, these are scalars, by an application.of Schur’s 
lemma. We wish to consider actions constructed from irreducible supermultiplets of 
component fields, and in the standard way we achieve this by imposing chiral constraints 
on our superfields. A superiield p (6 )  is’ said to be chiral (anticbiral) if D A ~  = 0 
(DA@ = 0), where 

- a  D*=-- aeA iuzAoAa, 

are the usual super-covariant derivatives. 
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In a superconformal model, the fields transform as 

~ ( z )  r* 'p(z')'=e'.''p(z) (13) 

where Tis any generator of the isotropygroup and f is a parameter carrying appropriate 
Lorentz indices. 

Consider the action of a left-handed special supersymmetry transformation on a 
chiral superlield 'p. To lowest order in the parameter f A  we have 

(14) -A- ,  @(z)=[a(z) ,  1) SA]. 

In order that this transformation be consistent with chirality we require 

beS'p(z)=O (15) 

{ S A ,  b*}q(z)=O. (16) 

which is satisfied provided 

A short shows that 

{SA, b = } = z s = ~ A - e = * J B - b ~ ~ ~ , + 4 ~ = ~ *  (17) 

and applying this to a scalar field, we find that 2A = d. 
By a similar argument, an antichiral field must satisfy 

{SA! DE}$=0. (18) 

{SA, DB}= ~EBAA+ &E,&+ uY&,, -48BDA (19) 
and thus an antichiral field has 2A = -d. 

We may also consider superlields with extemal Lorentz indices. Taking into account 
Lorentz rotations, we find that a spinor superfield #A;\sc... with b.&AEc.,, = 0 has 2A = d, 
while $A* e... with DA+~b;ilie,.. = 0 has 2A = -d. 

For spinor fields with both dotted and undotted indices we find that the condition 
{SA, DE}# = O  is inconsistent, and thus these fields may not appear in a conformally 
invariant action. We note also that since a vector index may be replaced by a pair of 
spinor indices, one dotted, one undotted, fields carrying vector indices also may not 
appear. 

We note here that a similar argument applies in the case of a two-dimensional field 
theory-here the dilatation and chiral weights are replaced by the so-called superweight 
2" and chiral charge F. The two-dimensional superconformal algebra contains as a 
subalgebra the super-Mobius algebra, whose structure mirrors that of the full supercon- 
formal algebra in four dimensions. Consequently it follows from the above that a chiral 
field 'p has 2 X =  F while an antichiral field @ has-2X= -F, in agreement with the 
four dimensional case. This relation is also readily apparent from the N = 2 supercon- 
formal algebra [SI. 

Now 

- 

3. Immediate consequences 

Before looking at the consequences of this result for four-dimensional field theories, 
it will be illustrative to consider the two-dimensional Landau-Ginsburg models with 
N = 2 supersymmetry. 
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Landau-Ginzburg models are of interest because of the identification between the 
conformal models obtained from them at a renormalization group fixed point, and the 
N = 2 series of minimal superconformal models (see [SI and references therein). 

The action for a Landau-Ginsburg  model^ (in (2,2) Euclidean superspace) is 
given by 

S,, = - [ dZx d40 @+[ g 1 d2x dZO- n!  l l  'p"+c.c. (20) 

where D'p = 0. Notice that the interaction term is not classically conformally invariant 
since the coupling g is dimensional. At a quantum mechanical fixed point, the action 
will be superconformally invariant. The chiral generator T~ is given by 

If we h o w  that a non-trivial infra-red fixed point exists and that the interaction is of 
the form of equation (20) at this fixed point then invariance of the interaction term 
requires that the chiral charge of the field 'p is 2 / n  and.by the above argument its 
superweight must be l/n.  We note that the fixed point is outside the range of normal 
perturbation theoryand that there are quantum corrections to the effective potential. 

Returning to four dimensions, we now consider the various renormaliable N = 1 
supersymmetric field theories. The Crux of the matter is that the chiral weight of a field 
may be determined by examining the interaction term of the effective action at the 
fixed point. Firstly, look at the Wess-Zumino model, whose effective actions contains 
the terms 

where &9 = 0. At the fixed point, we have conformal invariance, and in particular 
invariance under the chiral transformation, whose corresponding Ward identity is given 
by: 

Substituting the explicit forms of Twz and A, we find that 'the chiral weight d of 'p 

is 2. From this we deduce the dilatation weight A = 1, which is of course the canonical 
value. Hence we have reproduced the~result of reference rl]. It is clear that this result 
is largely a consequence of the N = 1 non-renormalization theorem [lo]. We now give 
a manifestly supersymmetric version of the argument of reference [l]. 

4. Three point correlation function 

The superfield three point function ('p(x,, el, &)'p(xz, &, & ) 9 ( x 3 ,  e,, &)) k, uniquely 
determined at the fixed point, since it satisfies the superconformal Ward identities 

3 

;=I 
1 m'p ( 2 1 )  (0 ( 2 2 )  'p ( 2 3 ) )  = 0 (24) 

where E' are the operators {PL, MLv, D', K;,A', Qi, Qi, Sa, qi}, which are found 
from the previously given expressions by making the replacements 
x ~ x ; ,  @-e' ,  c u  and also A c a p ,  d e d i ,  etc. 
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Due to the chiral nature of ‘p, the resulting differential equations are most easily 
solved by moving to a chiral co-ordinate basis; i.e. we make the replacement x p  = 
y*+iOAn;AgA so that the condition D A ’ ~  = 0 becomes (J /JgA)q  = 0. The 0 dependence 
of a correlator is determined by the total chiral charge 

i di (25) 
i-1 

of the fields it contains. In this case this is just three times the chiral weight of the 
field ‘p. Taking this to be arbitrary at this stage, we have three possibilities (excluding 
the possibility that (‘p(zl)qp(z2)’p(z3))-O). These take the form: 

(26) 2 2 2  
( ( P ( Z l ) ( P ( Z 2 2 ) d Z 3 ) )  = e I e 2 e 3 ~ ( ~ l .  Y,, y3)  

wheref;Ajk, gijk,Jj, gjj are functions of (yl, y,, y3)  to be determined by scale invariance 
and supersymmetry. However, in the first case we find that supersymmetry cannot be 
satisfied, and in the second case, special supersymmetry fails, so we must reject these 
possibilities.~ In the case with total chiral charge 6, the unique solution, with suitable 
normalization, may be expressed in the form 

- b .  . where G”=(yeep+y~ep+y~l;e ,^)n~, ,” and y i j = y i - y , .  Notice that 0 IS in fact by 
itself a super-invariant quantity. It is immediate from the above three point function 
that the dilatation weight of ‘p is canonical (i.e. A = 1). We may also read off the chiral 
weight of ‘p, and verify that the rlation 2A = d is indeed satisfied. Expanding ‘p in 
component fields, we find this to be in exact agreement with the component three 
point functions given in [l]. 

5. Extension to supersymmetric gauge theories 

We now extend this result to supersymmetric gauge theories. In the case of an abelian 
gauge group this is immediate. The action for pure super-QEo is given by 

&QED== 1 d4x d2S WAWA where DA WA = 0. (30) 

Proceeding as in the Wess-Zumino case, the chiral Ward identity is given by 

where rsaED is the quantum effective action, which contains the classical action SsQEo 
given above. Substitution of the relevant expressions leads to the conclusion that the 
chiral weight of WA is 3, and hence using our earlier result the mass dimension of WA 
is 9 ,  the canonical value for a spinor field. It should also be possible to construct the 
three point function ( WA W, W,) from the superconformal Ward identities it satisfies, 
however the calculations become rather involved. 
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Extrapolation to the case of super-Yang-Mills is less straightforward. We have the 
action 

s ~- \ d4x dZB tr( WAWA) where tr(Kq) = C2(G)6, 
SYM - 64gzC2( G) 

T, being the generators of the gauge group in some representation. 
The main complication here is that WA is not chiral, rat her^ we have g~ WA = 0 

where $A is a gauge-covariant super-covariant derivative. Instead we may consider 
the composite gauge invariant operator tr( W A  WA) which does satisfy DA(tr( WA W,)) = 
0. At the fixed point, the action shows that this operator has chiral weight 6, and hence 
dilatation weight 3. Since chiral and dilatation weights tend to add in the case of 
composite chiral operators, one would like to deduce from this that the dimension of 
WA is canonical. 

We may now remark upon the existence of renormalization group fixed points in 
these theories. In the case of the Wess-Zumino model, it was argued in [l], using the 
massless extension of the Jost-Schroer theorem [6], that the only fixed point occurs 
when the coupling constant'is zero. From this, it was argued in [7] that the renormalied 
coupling is forced to zero as the renormalization scale is moved to infinity, i.e. that 
the theory is trivial. 

In the case of super-QED, to which we may couple chiral matter fields in the standard 
way, giving the action 

.~ 

the original form of the Jost-Schroer theorem is no longer applicable, since the proof 
of this theorem requires positive deEniteness of the Hilbert space of states of the 
quantum theory, a condition not applicable in a gauge theory. However it seems that 
this requirement is not strictly necessary, and an extension of the theorem to electrody- 
namics was proved by Strocchi in [SI. This theorem states that if the two point function 
of the electromagnetic field strength, (FpvFp,,) satisfies the condition 

'%3F&)FP(O)) = 0 , (34) 
then the theory is free. Using superconformal Ward identities we may analyse the two 
point function ( WA(yl, e,) WB(y2, &)). We are once again using chiral variables here, 
and the technique is identical to that described in section 4 above. Indeed we find 
that, up to an arbitrary normalization 

where y12=y,-y2 and eI2= & - e 2 .  
From the above expression we may easily find~the component field correlators. The 

chiral e expansion of WA is 

' (36) 

Hence we have FBA= D<BWAJ~=O where FAB=$U%F~~. Taking appropriate covariant 
derivatives of ( WAWB) we find that 

WA=AA-e B C A 6  V F  p~ '+e A D - L  2 0  2 C A . ~  
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Trading the spinor indices for vectorial indices, we find this to be equivalent to 

B P Conlong and P C West 

(3% 

where rpp = (qWp -[(y12)p(y12)p]/y:2).  This is the well known expression for the two 
point function in QED, thus Strocchi’s result applies and we may deduce that super-QED 
at a fixed point is trivial. 

In the case of the Wess-Zumino model, it was argued in some detail in reference 
[7], using arguments of renormalization group flow, that the model is trivial, since the 
effective coupling is driven to zero in the infra-red limit. This is a consequence of the 
fact that the p function must necessarily be~positive for all values of the coupling, and 
thus there is a one to one correspondence between the effective coupling and the 
renormalization scale. We have shown that the p function for super-QED has this 
property also, and hence it would seem likely that this rather general argument can 
indeed be extended to the case of super-QED. 

If we were able to prove a theorem analogous to that of Strocchi for the case of 
non-abelian gauge fields, then we would also be able to argue for the triviality of the 
super-Yang-Mills model. However at present we know of no such extension to the 
theorem. 

r r -rwrv0 
(FWV(Y*)FPrr(YZ)) = ”w v;: 

6. Summary 

From interactions of the types considered we may build the most general renormaliz- 
able N = 1 supersymmetric .quantum field theory. We have thus established that all 
(gauge invariant) fields appearing in b y  such model have zero anomalous dimension 
at a renormalization group fixed point. It remains an open question, however, as to 
whether non-trivial k e d  points exist in supersymmetric non-abelian gauge theories. 
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